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Abstract. The selection of Saffman-Taylor fingers by surface tension has been widely studied. Here their selection
is analysed by another regularisation widely adopted in studying otherwise ill-posed Stefan problems, namely
kinetic undercooling. An asymptotic-beyond-all-orders analysis (which forms the core of the paper) reveals for
small kinetic undercooling how a discrete family of fingers is selected; while these are similar to those arising for
surface tension, the asymptotic analysis exhibits a number of additional subtleties. In Appendix 1 a description of
some general features of the Hele-Shaw problem with kinetic undercooling and an analysis of the converse limit
in which kinetic undercooling effects are large are included, while Appendix 2 studies the role of exponentially
small terms in a simple linear problem which clarifies the rather curious behaviour at the origin of Stokes lines in
the Hele-Shaw problem with kinetic undercooling.
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1. Introduction

In 1958 Saffman and Taylor [1] demonstrated a family of solutions to the Hele-Shaw equations
which describe a finger of inviscid fluid displacing a viscous fluid in a Hele-Shaw channel,
with the relative width λ of the inviscid finger being arbitrary. In experiments [1] they found
that λ was always close to 1/2 and that the experimental finger profile was very close to the
theoretical profile for λ = 1/2.

A constant pressure condition was adopted on the moving boundary in [1] and it was
conjectured that the presence of a small surface tension would select the solution λ = 1/2
from the continuum, but a naive perturbation expansion in powers of the surface tension still
allowed arbitrary λ. Several authors then showed that terms which are exponentially small in
the surface tension are responsible for the selection of λ [2–6] in the presence of small surface
tension, giving a discrete spectrum of admissible values. A number of other regularisations
(such as anisotropic surface tension effects, non-parallel gap effects, contact angle effects)
have also been studied (see [7] and references therein) in terms of how possible values of λ are
selected via terms which are exponentially small in the regularising parameter; other authors
(e.g. [8, 9]) have sought to develop selection criteria which are not regularisation dependent.
With regard to the former, we emphasise that the current study leads to beyond-all-orders
subtleties not present in existing analyses while, with respect to the latter, we believe it also
goes some way towards clarifying how the exceptional status of the complex plane structure
of the case λ = 1/2 (specifically, its coincident complex plane singularities) leads to its being
selected by a wide variety of different regularisations, including kinetic undercooling.

The Hele-Shaw problem also arises as the large-latent-heat (small-specific-heat) limit of
the Stefan problem for solid/liquid phase changes. The physical effect most widely incor-
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porated in regularising the ill-posed Stefan problem, apart from surface energy, is kinetic
undercooling, whereby the value of the dependent variable (the temperature) on the moving
boundary depends on the normal velocity of that boundary (see, for example, [10–12] for
relevant background and other references). The Stefan problem also arises in the theory of
superconductivity as a model for the collapse of the superconducting state in the presence of a
magnetic field, where it is also regularised by surface tension and kinetic undercooling effects
[13]. Equivalent formulations are also relevant to the modelling of epitaxial growth, see [14],
for example.

Thus there are very good physical grounds for investigating the role of kinetic undercooling
in the Hele-Shaw problem, particularly since there have been few previous studies of such
formulations (see [15, 16], however). A discussion of some of the general properties of Hele-
Shaw flow with kinetic undercooling, and of the selection problem in the limit complementary
to that in the rest of the paper, is relegated to Appendix 1 in order to avoid its interrupting the
beyond-all-orders analysis which constitutes the main theme of the paper.

The main aim of the present paper is to show that the inclusion of kinetic undercooling as
the regularising mechanism for Saffman-Taylor fingers also leads to the selection of λ = 1/2
in the limit of small kinetic undercooling parameter, using the method developed recently in
[2, 17]; for an alternative approach, see [23], for example.

The presence of singularities in the complex plane of the leading-order solution (i.e., the
solution in the absence of kinetic undercooling) leads to a divergent asymptotic expansion in
the kinetic undercooling parameter. This expansion exhibits the Stokes phenomenon, whereby
exponentially small terms are switched on across certain Stokes lines in the complex plane
originating at the singularities of the leading-order solution. The method of [17] is
(i) expand the solution naively as an algebraic asymptotic series;
(ii) apply a WKBJ-type ansatz to the equation for φn to find the behaviour of φn as n → ∞;
(iii) truncate the algebraic series optimally and observe the subdominant exponential being

switched on across a Stokes line.
By using this method we will be able to see the region in the complex plane in which the sub-
dominant exponentials are present and to deduce the condition for a solution of the regularised
problem to exist.

We will find that the structure of the Stokes lines associated with the kinetic undercooling
regularisation is novel, so that the problem is of both physical and mathematical interest.

In the next section we formulate the free-boundary problem as a coupled integral and
differential equation analagous to that of McLean and Saffman for the Hele-Shaw problem
with surface tension [18]. This formulation is convenient for the beyond-all-orders analysis
which follows.

In Section 3 we apply the method of [17] to the problem when λ − 1/2 = O(1). We de-
velop the algebraic expansion in powers of the kinetic undercooling parameter, determine the
behaviour of the late terms up to a constant �, and observe the switching on of subdominant
exponentials across Stokes lines via a local analysis which smoothes the Stokes discontinuity.
We obtain a solvability condition easily and naturally, without the usual need for an inner
analysis in the vicinity of the singularity in the complex plane. For completeness, and as a
check for consistency, in Section 4 we perform this inner analysis to determine the unknown
constant � anyway.

We will find that the Stokes lines determined in Section 3 behave rather curiously at the tip
of the finger. In Appendix 2 we consider a paradigm problem which clarifies this behaviour.
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Figure 1. The region in the physical plane showing the upper half of the finger.

For the principal solution branches we find that the solvability condition implies that
λ − 1/2 is in fact small in the limit of small kinetic undercooling. Thus the analysis shows
that small kinetic undercooling selects λ = 1/2. However, to determine how λ approaches 1/2
as the kinetic undercooling parameter tends to zero a separate analysis is required, which we
perform in Section 5. In this case matching with an inner solution is required. We find that
to determine the solvability condition requires a beyond-all-orders analysis of the nonlinear
recurrence relation associated with the inner problem, so that it cannot simply be iterated nu-
merically as usual. This is an extra complication over and above the usual subtleties associated
with beyond-all-orders problems, and is beyond the scope of the present paper.

Finally, in Section 7 we present our conclusions.

2. Formulation of the problem

The problem we consider can be thought of either as a Hele-Shaw problem, or as a Stefan
problem in the limit of small specific heat, and we start from the nondimensional version of
the equations.

The following analysis parallels that in McLean and Saffman for the Hele-Shaw problem
with surface tension [18]. We consider a channel of non-dimensional width 2. We suppose
that a travelling wave has formed in which a symmetric single finger of width 2λ as x → −∞
is propagating at a velocity 1/(1 − λ) (see Figure 1). The dimensionless equations are then

∇2φ̄ = 0 (1)

outside the finger with

∂φ̄

∂n
= vn, (2)

φ̄ = cvn, (3)

on the free boundary, where φ̄ is the dimensionless velocity potential or temperature, vn is the
normal velocity of the free boundary, and c is the dimensionless kinetic under-
cooling parameter. Following [1], we work in a frame moving with the finger by setting
φ̄ = x/(1 − λ) + φ. Then
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Figure 2. The liquid region in the s plane.

∇2φ = 0, (4)

outside the finger with, in the case of travelling wave solutions,

∂φ

∂n
= 0, (5)

φ = cvn − x

1 − λ
, (6)

on the free boundary. On the fixed boundaries y = ±1 we have

∂φ

∂y
= 0. (7)

The conditions as x → ±∞ are

φ ∼ − x

1 − λ
as x → −∞, λ < |y| < 1, (8)

φ ∼ −x as x → +∞, −1 < y < 1. (9)

As usual, we define the complex potential by w = φ + iψ , where ψ is the streamfunction for
Hele-Shaw flow, and we let z = x + iy. Then the conformal transformation z → w maps the
liquid region onto an infinite strip of unit width in the potential plane. The second conformal
transformation

w → s = e−wπ (10)

finally maps the liquid region onto the upper half s-plane. The interface AB is mapped to the
real segment 0 < s < 1, with s = 1 corresponding to the finger tip. Figure 2 shows the s

plane, indicating the positions of various points of interest. It is most convenient to work in
terms of the complex velocity

dw

dz
= û − iv̂,
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where (û, v̂) denotes the velocity. At the interface this velocity must be tangential, and may
be written as q̂e−iθ̂ where θ̂ is the angle between the tangent and the x direction. Making use
of the analyticity of logq̂ − iθ̂ in the upper half s plane, it can be shown using standard Hilbert
transform results that on the interface

log q̂ = − 1

π
−
∫ 1

0

θ̂ (s′) − π

s′ − s
ds′, (11)

with the constants fixed by the condition that q̂ → 1 as φ → −∞. Equation (11), involving
a principal value integral, holds only when s is real. We will need the analytic continuation of
(11) into the upper-half complex s plane, which from the Plemelj formulae is

log q̂ − i(θ̂ − π) = − 1

π

∫ 1

0

θ̂ (s′) − π

s′ − s
ds′. (12)

Note that the right-hand side of (12) may alternatively be written as

− 1

π

∫ ∞

−∞
θ̂ (s′) − π

s′ − s
ds′ = − i

π

∫ ∞

−∞
log q̂(s′)
s′ − s

ds′ = 1

2π i

∫ ∞

−∞
log q̂(s′) − i(θ̂(s′) − π)

s′ − s
ds′,

since∫ ∞

−∞
log q̂(s′) + i(θ̂(s′) − π)

s′ − s
ds′ = 0

because

log q̂(s′) − i(θ̂(s′) − π)

s′ − s̄

is analytic in the upper half plane, where s̄ is the complex conjugate of s. However, we will
use the form (12) for the remainder of the paper.

The normal velocity of the interface is given by

vn = sin θ̂

1 − λ
.

Noting that

∂x

∂S
= cos θ̂ ,

dφ

dS
= q̂,

dφ

ds
= − 1

πs
, (13)

where S is arc length, we find on differentiating Equation (6) with respect to arclength that

−cπ cos θ̂ q̂s
dθ̂

ds
− (1 − λ)q̂ = cos θ̂ , (14)

with boundary conditions

θ̂ (0) = π, q̂(0) = 1/(1 − λ), (15)

θ̂ (1) = π/2, q̂(1) = 0. (16)

Finally, the dependence on λ may be simplified by setting



6 S.J. Chapman and J.R. King

θ = θ̂ − π, q = (1 − λ)q̂, (17)

to give

2ε cos θ qs
dθ

ds
− q = − cos θ, (18)

log q − iθ = − s

π

∫ 1

0

θ(s′) ds′

s′(s′ − s)
. (19)

with boundary conditions

θ(0) = 0, q(0) = 1, (20)

θ(1) = −π/2, q(1) = 0, (21)

where

ε = cπ

2(1 − λ)
(22)

is the dimensionless kinetic undercooling parameter. Once a solution of (18–21) is known, the
corresponding value of λ can be deduced from the relation

log(1 − λ) = 1

π

∫ 1

0

θ(s′)
s′ ds′, (23)

obtained from (11) and (15). The Saffman-Taylor solutions are given by

q0 =
√

1 − s

1 + αs
, θ0 = cos−1

√
1 − s

1 + αs
, (24)

where

α = 2λ − 1

(1 − λ)2
(25)

is arbitrary.
We could work directly with the variable s in what follows, but this would involve working

in a slit plane, since the top and bottom branches of the finger map to the top and bottom of
the slit 0 < s < 1, respectively. We prefer to change variables by setting

t = −
√

1 − s

s
, (26)

giving

ε cos θ q(1 + t2)

t

dθ

dt
+ q = cos θ, (27)

log q − iθ = 2

π

∫ 0

−∞
t̄ θ(t̄)

t2 − t̄2
dt̄ , (28)

θ(−∞) = 0, (29)
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Figure 3. The liquid region in the t plane.

θ(0) = −π/2. (30)

This maps the top branch of the finger to the negative real axis, the bottom branch to the
positive real axis, and the symmetry line to the imaginary axis (see Figure 3). We may now
replace the condition at the origin with the condition

θ(∞) = −π (31)

if we wish. Note that in (29) and in the related integrals below the integrand is O(t̄−2) as
t̄ → −∞ so that the integral is well-defined.

3. Analysis as ε → 0 with α of order one

We are interested in the limit ε → 0; in this section we take α to be of order one in (24–25).
We begin by expanding in powers of ε:

θ ∼
∞∑

n=0

εnθn, (32)

q ∼
∞∑

n=0

εnqn, (33)

giving

q0 = cos θ0, (34)

log q0 − iθ0 = 2

π

∫ 0

−∞
t̄ θ0(t̄ )

t2 − t̄2
dt̄ , (35)

cos θ0 q0(1 + t2)

t

dθ0

dt
+ q1 = −θ1 sin θ0, (36)

q1

q0
− iθ1 = 2

π

∫ 0

−∞
t̄θ1(t̄ )

t2 − t̄2
dt̄ , (37)
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cos θ0 qn−1(1 + t2)

t

dθ0

dt
− sin θ0 θn−1q0(1 + t2)

t

dθ0

dt
+ cos θ0 q0(1 + t2)

t

dθn−1

dt
+ · · ·

+qn = −θn sin θ0 − θ1θn−1 cos θ0 + · · · , n ≥ 2,

(38)

qn

q0
+ · · · − iθn = 2

π

∫ 0

−∞
t̄ θn(t̄ )

t2 − t̄2
dt̄ , n ≥ 2, (39)

with boundary conditions

θ0(−∞) = 0, (40)

θ0(∞) = −π, (41)

θn(±∞) = 0, n ≥ 1. (42)

The terms on the left-hand side of (38) come from expanding the triple product in cos θ , q

and θ in (27), those on the right-hand side come from expanding cos θ , and those on the
left-hand side of (39) come from expanding log q in (28). The leading-order solution is the
Saffman-Taylor solution (24)

q0 = cos θ0 = − t

(1 + α + t2)1/2
, (43)

sin θ0 = − (1 + α)1/2

(1 + α + t2)1/2
. (44)

Since we are analytically continuing to complex values of t , care is of course required
in assigning the branches correctly whenever multivalued functions appear. Here the square
roots are real and positive for real t , and this in turn defines the branches in the functions θ1,
q1 and u below.

We will find that we also require the first correction term (this term is not needed in the
corresponding analysis of the surface-tension-regularised problem; its necessity here is due
to the fact that the regularisation is first-order rather than second-order). Eliminating q1 we
obtain

θ1(i + tan θ0) + 2

π

∫ 0

−∞
t̄ θ1(t̄ )

t2 − t̄2
dt̄ = −(1 + t2)

t

d

dt
(sin θ0). (45)

Substituting in the solution for θ0 gives

θ1

(
i + (1 + α)1/2

t

)
+ 2

π

∫ 0

−∞
t̄ θ1(t̄ )

t2 − t̄2
dt̄ = −(1 + t2)(1 + α)1/2

(1 + α + t2)3/2
, (46)

or, for real t ,

(1 + α)1/2θ1

t
+ 2

π
−
∫ 0

−∞
t̄θ1(t̄)

t2 − t̄2
dt̄ = −(1 + t2)(1 + α)1/2

(1 + α + t2)3/2
. (47)

This equation can be solved explicitly by the Wiener-Hopf technique (we omit the details; see
for example [19, Chapter 8] for a description of the technique), to give
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θ1 = − (1 + α)1/2t

π(1 + α + t2)
[C+ π(1 + α)1/2(1 + t2)

(1 + α + t2)3/2
+ 2(1 + t2)

(1 + α + t2)

+ t (1 + t2)

(1 + α + t2)3/2
log

(
1 + α + 2t2 − 2t (1 + α + t2)1/2

1 + α

)]
,

(48)

q1 = (1 + α)1/2θ1

(1 + α + t2)1/2
+ t (1 + t2)(1 + α)1/2

(1 + α + t2)2
, (49)

where the constant C is arbitrary at this point. In fact, C corresponds to a perturbation to α

and is therefore related to the first-order correction to the eigenvalues αn, which here we will
determine only to leading order in ε.

In order to truncate the expansions (32), (33) optimally we need to know the behaviour
of θn and qn as n → ∞. From Equation (38) we see that the set of singular points of θn

for all n will be those of θ0, together with the points t = ±i. However, since each time we
calculate a new term in the asymptotic expansion we differentiate the previous term, if θn−1

has a singularity of strength p then θn will have a singularity of strength p+1. Thus we expect
there to be factorial/power divergence in the large n behaviour of θn and qn. Following [17]
we therefore seek a solution as n → ∞ of the form

θn ∼ 

�(n + γ )

un+γ
, (50)

where u, γ and 
 are possibly functions of t but are independent of n.
Now, in (39) we need to estimate the relative sizes of θn and

I =
∫ 0

−∞
t̄θn(t̄)

t2 − t̄2
dt̄ . (51)

Substituting (50) in (51) we have

I ∼ 
�(n + γ )

∫ 0

−∞

t̄

(t2 − t̄2)uγ
e−n log u dt̄ , as n → ∞. (52)

We will verify a posteriori that the dominant contribution to the integral comes from the upper
end point. Then I will be exponentially subdominant to θn wherever u(t) is smaller that u(0).
This will certainly be true near the singularities in the complex plane (where u = 0), and in
fact it will hold throughout the region in which we are interested. Thus we have

qn

q0
− q1qn−1

q2
0

∼ iθn as n → ∞. (53)

Hence

qn ∼ iq0θn + iq1θn−1 as n → ∞. (54)

Substituting (50) and (54) in (38) we find that at leading order as n → ∞

u′ = t (iq0 + sin θ0)

q0 cos θ0(1 + t2)
, (55)

giving
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u = −
∫ t

i(1+α)1/2

(
(1 + α)1/2 + it̄

)3/2 (
(1 + α)1/2 − it̄

)1/2

t̄ (1 + t̄2)
dt̄ . (56)

The integral can be evaluated explicitly, but the resulting expression is rather cumbersome; it
is given in Appendix 3 for completeness.

To evaluate γ and 
 we need to go to the next order in n. The easiest way to proceed is
first to use u as the independent variable [17]. Equations (18) and (19) become

ε
dθ

du
= t (u)

u′(1 + t (u)2)

(
1

q
− 1

cos θ

)
, (57)

log q − iθ = 2

π

∫ 0

−∞
t̄θ(t̄ )

t (u)2 − t̄2
dt̄ , (58)

while (38) becomes

dθn−1

du
= t

u′(1 + t2)

(
−qn

q2
0

+ 2qn−1q1

q3
0

− θn

sin θ0

cos2 θ0
− θ1θn−1

1 + 2 tan2 θ0

cos θ0

)
+ · · · ; (59)

in (57) and (59) u′ denotes u′(t (u)). Simplifying, we find that

dθn−1

du
+ θn = tθn−1

u′(1 + t2) cos2 θ0
(iq1 − (cos θ0 + 2 sin θ0 tan θ0)θ1) + · · · . (60)

Substituting in the ansatz (50), we find that the terms of order n log n give γ ′ = 0, so that γ is
constant. Equating the terms of order n we find

d


du
= 


u′
t

(1 + t2) cos2 θ0
(iq1 − (cos θ0 + 2 sin θ0 tan θ0)θ1) . (61)

Hence

log 
 =
∫

t

(1 + t2) cos2 θ0
(iq1 − (cos θ0 + 2 sin θ0 tan θ0)θ1) dt. (62)

Thus

θn ∼ ��(n + γ )

un+γ
eF(t), (63)

where

F(t) =
∫ t

i

t

(1 + t2) cos2 θ0
(iq1 − (cos θ0 + 2 sin θ0 tan θ0)θ1) dt. (64)

The choice of starting point for the integral is arbitrary: changing it simply changes the value
of constant �.

Now from (56) and (43), (44), as t → i(1 + α)1/2 we have

u ∼ 23/2eiπ/4

5α(1 + α)1/4
(t − i(1 + α)1/2)5/2, (65)

θ0 ∼ (i/2) log(t − i(1 + α)1/2). (66)

Using (48–49) in (64) we may calculate the behaviour of eF(t) as t → i(1+α)1/2. The analysis
is relegated to Appendix 3, but the result is
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eF(t) ∼ Beiπ/4(t − i(1 + α)1/2)1/2,

as t → i(1 + α)1/2, for some real constant B. Since θ0 is logarithmic in u as u → 0
Equation (63) implies

γ = 1
5 . (67)

Having found the asymptotic behaviour of θn as n → ∞, the next step is to truncate the
asymptotic series and study the behaviour of the remainder. Truncating after N terms we have

θ =
N−1∑
n=0

εnθn + RN, (68)

where

ε
dRN

du
+ RN + εRN

t

u′(1 + t2) cos2 θ0
((cos θ0 + 2 sin θ0 tan θ0)θ1 − iq1) + · · · ∼ εNθN, (69)

as N → ∞, ε → 0. The homogeneous version of this equation has a solution with the
following asymptotic behaviour as ε → 0:

RN ∼ e−u/εeF(t).

We aim to show that a multiple of this is switched on across the Stokes line where u is real
and positive. We define the Stokes multiplier A by setting

RN = e−u/εeF(t)A, (70)

which in (69) gives

εe−u/ε dA

du
+ · · · ∼ εN��(N + γ )

uN+γ
. (71)

Following [17] we let u = reiϑ , and write

d

du
= − ie−iϑ

r

d

dϑ
.

The right-hand side of (71) is minimal for N ∼ r/ε. We therefore set N = r/ε + µ, where
µ ∈ [0, 1). Then, as ε → 0, (71) becomes

dA

dϑ
∼ i

√
2π ereiϑ/ε�e−r/εr1/2

εγ+1/2eiϑr/εeiϑ(µ+γ−1)
. (72)

The right-hand side is exponentially small except on the Stokes line ϑ = 2πk, k ∈ Z, where
it is algebraic in ε. Hence A will undergo a rapid transition near ϑ = 2πk. To examine this
transition we introduce the local scaling ϑ = 2πk + δϑ̄ , giving

dA

dϑ̄
∼ i

√
2π δr1/2�e−rδ2ϑ̄2/(2ε)

εγ+1/2e2π ikγ
. (73)

We see that the correct scalings are ϑ = ε1/2ϑ̄ , A = Â/εγ , giving

dÂ

dϑ̄
∼ i

√
2π r1/2�e−rϑ̄2/2

e2π ikγ
. (74)
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Thus

Â = a + i
√

2π �

e2π ikγ

∫ ϑ
√

r

−∞
e−x2/2 dx, (75)

that is, we have the familiar error function smoothing [20]. Matching with the outer solution
away from the Stokes line there is a jump in A given by

A(ϑ = 2πk+) − A(ϑ = 2πk−) = 2π i�e−2π ikγ

εγ
. (76)

Let us now examine the implications of these Stokes lines for the problem (27–30). The
Stokes lines are given by u real and positive.

We consider first the case α < 0, corresponding to λ < 1/2. Figure 4(a) shows typical
Stokes lines in this case. There is a Stokes line emerging downwards from t = i

√
1 + α and

another emerging upwards from t = −i
√

1 + α, both parallel to the imaginary axis.
On the Stokes line emerging from t = i

√
1 + α the argument of u is 0 and across it

2π i�e−u(t)/ε

εγ
eF(t) (77)

is switched on. Similarly, or by symmetry, as we cross the Stokes line emerging from t =
−i

√
1 + α

−2π i�̄e−ū(t )/ε

εγ
eF̄ (t) (78)

is switched on. On the real axis where these Stokes lines meet

Re

(
2π i�e−u(t)/ε

εγ
eF(t)

)
(79)

is switched on. Since this does not decay sufficiently rapidly at infinity there are no solutions
with λ < 1/2.

Let us now consider the case α > 0, corresponding to λ > 1/2. In this case typical Stokes
lines are shown in Figure 4(b).

This time there are two Stokes lines emerging downwards from t = i
√

1 + α, one either
side of the imaginary axis, and two similar Stokes lines emerging from t = −i

√
1 + α.

On the left-hand Stokes lines the argument of u is −2π , and as we cross their intersection
point on the real axis

Re

(
2π i�e−u/ε

e−2π iγ εγ
eF(t)

)
(80)

is switched on. On the right-hand Stokes lines the argument of u is zero, and as we cross the
point at which they meet the real axis,

Re

(
2π i�e−u/ε

εγ
eF(t)

)
(81)

is switched on. The condition for a solution is that these two functions exactly cancel as
t → ∞. However, now we must remember that the branch of the function u in (80) is not the
same as that in (81), due to the fact that we have circled the branch point at t = i. In fact, if
we represent the first branch of u by u1 and the second by u2, then
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Figure 4. The Stokes lines, which are given by u real and positive, in the complex t plane for different values of
α.

u1 − u2 = π iα1/2
(
(1 + α)1/2 − 1

)
, (82)

since, from (56), the difference is exactly the residue due to the pole at t = i. Hence, the
asymptotic condition for a solution to exist is that

u1

iε
− 2π iγ − u2

iε
= (2k + 1)π i, (83)

i.e.,

α1/2 (
(1 + α)1/2 − 1

) = ε(2k + 1 + 2γ ) = ε(2k + 7/5), (84)

where k ∈ Z, remembering that γ = 1/5.
Alternatively, we may write the condition for there to be a solution as θ(0) = −π/2.

However, from (56) we see that in fact Re(u) → ∞ as t → 0, so that the exponentially small
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correction term in fact vanishes at the origin for any α. The behaviour of the Stokes lines in
the vicinity of the origin is unusual, and an inner analysis is needed in order to determine
the solvability condition by imposing θ(0) = −π/2. In Appendix 2 we examine a paradigm
problem which elucidates this behaviour. Naively we might expect the solvability condition
to be

cos

(
� + π/2 − Im(u1(0))

ε
+ 2πγ

)
= 0 = cos

(
� + π/2 − Im(u2(0))

ε

)
, (85)

where � = Rei�. Since

Im(u1(0)) = πα1/2

2

(
(1 + α)1/2 − 1

)
, (86)

this gives

α1/2 (
(1 + α)1/2 − 1

) = ε

(
2k + 2�

π
+ 4γ

)
= ε

(
2k + 2�

π
+ 4/5

)
, (87)

where k ∈ Z. For this to be consistent with (84) we must have � = (2m + 1 − 2γ )π/2 =
mπ + 3π/10. We will see in the next section that this is indeed the case, by matching with
an inner solution in the vicinity of the singularity at t = i

√
1 + α. We emphasize though that

we have been able to derive the condition (84) for a solution to exist without solving either
the inner problem in the vicinity of the singularity, or the inner problem in the vicinity of the
origin.

Thus we see that for any fixed k, i.e., for any particular solution branch, α → 0 as ε → 0,
corresponding to λ → 1/2. However, for each fixed ε there are infinitely many solution
branches, which cluster around α = ∞, corresponding to λ = 1. The first ten solution
branches in the corresponding asymptotic regime are shown in Figure 5.

For α → 0 we find

α3/2 ∼ 2ε(2k + 7/5). (88)

Now, for the lower solution branches, (and in particular for the lowest solution branch k = 0,
which is the one we expect to be observable in practice) we have α = O(ε2/3), while our
analysis has been performed under the assumption that α = O(1) as ε → 0. In Section 5 we
will consider the case α = O(ε2/3).

4. The constant �

To complete the analysis of the case α = O(1) we need to evaluate �. To do this we may
write down the full Laurent expansion for θn and compare this for large n with our asymptotic
behaviour (50). Since we require just one number, we need to compare for just one value of s.
We therefore choose the simplest value of s to make this comparison, namely at the singularity
s = i

√
1 + α. To evaluate the Laurent expansion of θ as s → i

√
1 + α we take advantage of

matched asymptotics. In that language we require one term in the inner limit of each order of
the outer expansion. It is therefore enough for us to have the outer limit of the one term inner
expansion. The correct scaling for the inner problem is

t = i(1 + α)1/2 + ε2/5z, (89)
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Figure 5. The relative finger width λ as a function of kinetic undercooling strength ε for the first ten solution
branches. The curves are valid asymptotically in the limit ε → 0, εk order one. Of course, this implies that the
lower branches in the figure do not provide accurate representations of the asymptotic behaviour; the analysis of
Sections 5 and 6 concerns the case ε → 0 with n = O(1) and thus encompasses in particular the small ε behaviour
of the most important (i.e., stable) branch, namely n = 1.

giving

q0 = cos θ0 ∼ e−3iπ/4(1 + α)1/4

21/2z1/2ε1/5
, (90)

sin θ0 ∼ −e−iπ/4(1 + α)1/4

21/2z1/2ε1/5
, (91)

θ0 ∼ i

2
log z − i log

(
21/2(1 + α)1/4e−3iπ/4

ε1/5

)
. (92)

Writing (28) in inner coordinates gives

log q − iθ = 2

π

∫ 0

−∞
t̄ θ(t̄)

t2 − t̄2
dt̄ , (93)

∼ − log 2 − iε2/5z

2(1 + α)1/2
. (94)

Therefore, we define the inner variable φ by

q = e−3iπ/4(1 + α)1/4

21/2ε1/5z1/2
φ, (95)

giving, to leading order in the inner region
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−αe−iπ/4
√

2 (1 + α)1/4

z

d

dz

(
φ0

z1/2

)
= 1 − 1

φ2
0

. (96)

The rescaling

z =
(
αe−iπ/4

√
2 (1 + α)1/4

)2/5
ζ, (97)

then gives

−1

ζ

d

dζ

(
φ0

ζ 1/2

)
= 1 − 1

φ2
0

. (98)

We require the outer limit, that is, we need to expand φ as ζ → ∞. We find

φ0 ∼
∞∑

n=0

An

ζ 5n/2
=

∞∑
n=0

An

z5n/2

(
αe−iπ/4

√
2 (1 + α)1/4

)n

, (99)

where the An satisfy the recurrence relation
n∑

m=1

(
5m

2
− 2

)
Am−1

n−m∑
k=0

An−m−kAk =
n∑

m=0

An−mAm, n ≥ 1, (100)

with

A0 = 1. (101)

Returning to the outer expansion, since qn ∼ iθnq0 as n → ∞, we have

εnqn ∼ iεn�q0�(n + γ )

un+γ
eF(t) as n → ∞ (102)

∼ i�e−3iπ/4(1 + α)1/4

21/2z1/2ε1/5
Beiπ/4ε1/5z1/2

(
5α(1 + α)1/4

23/2eiπ/4εz5/2

)γ

�(n + γ )

(
5α(1 + α)1/4

23/2eiπ/4εz5/2

)n

,

(103)

as ε → 0 with z = O(1). Comparing (95), (99) and (103) we see

� = − i

Beiπ/4

(
23/2eiπ/4

5α(1 + α)1/4

)γ

lim
n→∞

(
4

5

)n
An

�(n + γ )
. (104)

From (100) we find that An is real and positive as n → ∞. Hence

� = −3π

4
+ γ π

4
= −7π/10, (105)

which confirms the corresponding result of Section 3.

5. Analysis as ε → 0 with α order ε2/3

5.1. ALGEBRAIC EXPANSION

In the Section 3 we gave evidence that for n of order one we have α = O(ε2/3) as ε → 0.
That analysis assumed that α was order one, so that the singularities at t = i and t = i

√
1 + α

were well separated in the outer region. In this section we consider the case α = O(ε2/3),
which requires a separate analysis, via a similar Stokes line approach. We set



The selection of Saffman-Taylor fingers by kinetic undercooling 17

α = ε2/3a. (106)

The expansion of θ and q now proceeds in powers of ε1/3:

q ∼
∞∑

n=0

εn/3qn, θ ∼
∞∑

n=0

εn/3θn. (107)

The first three terms in this expansion may be obtained by expanding (43), (44) in powers of
ε after substituting in (106), since the coupling between terms does not appear until O(ε):

q0 = cos θ0 = √
1 − s = − t

(1 + t2)1/2
, (108)

q1 = 0, (109)

sin θ0 = −√
s = − 1

(1 + t2)1/2
, (110)

θ1 = 0, (111)

θ2 = at

2(1 + t2)
. (112)

We will also need the solution for θ3, which is given by the α → 0 limit of (48), namely

θ3 = − Ct

π(1 + t2)
− t

(1 + t2)3/2
− t2

π(1 + t2)3/2
log(t − (1 + t2)1/2)2, (113)

where C is arbitrary (as before, C can be related to the first order correction to a). Writing

ε
(1 + t2)

t

dθ

dt
+ 1

cos θ
= 1

q
, log q − iθ = 2

π

∫ 0

−∞
t ′θ(t ′) dt ′

t2 − (t ′)2
,

we find that the equations for θn, qn are

(1 + t2)

t

dθn−3

dt
+ sin θ0

cos2 θ0
θn +

(
1 + sin2 θ0

cos3 θ0

)
(θ2θn−2 + θ3θn−3) + · · · =

−qn

q2
0

+ 2q2qn−2

q3
0

+ 2q3qn−3

q3
0

+ · · · ,

(114)

qn

q0
− q2qn−2

q2
0

− q3qn−3

q2
0

+ · · · = iθn. (115)

From (115) we find

qn ∼ iq0θn + iq2θn−2 + iq3θn−3 + · · · . (116)

Using (116) and the relations

q0 = cos θ0, q2 = − sin θ0θ2, q3 = − sin θ0θ3 − cos2 θ0
(1 + t2)

t

dθ0

dt
,

we have
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dθn−3

dt
+ ie−iθ0

cos2 θ0

tθn

1 + t2
+

(
1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ2θn−2

1 + t2

+
((

1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ3

1 + t2
+ i

dθ0

dt

)
θn−3 + · · · = 0.

(117)

As n → ∞, θn has the behaviour

θn ∼ 
nn/3+γ e−n/3+βn1/3

un/3
, (118)

where 
, u, β and γ may be functions of t but are independent of n. The complicated
asymptotic behaviour (118) of θn (by comparison to the usual factorial/power) is a direct
consequence of the fact that kinetic undercooling is a first-order rather than second-order
regurisation. In fact we will find when matching with the inner solution in the vicinity of t = i
that we must be careful to allow all three branches of un/3 in the denominator, so that we write
instead

θn ∼ 
kn
n/3+γ e−n/3+βn1/3

e2π ink/3un/3
, k = 0, 1, 2. (119)

Substituting (119) in (117) and dividing by θn gives(
1− 3

n

)n/3+γ e

n − 3
eβ((n−3)1/3−n1/3)

[
u


k

d
k

dt
−

(n
3

−1
) du

dt
+ dγ

dt
log(n−3)u+ dβ

dt
(n−3)1/3u

]

+ ie−iθ0 t

cos2 θ0(1 + t2)
+

(
1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ2

1 + t2

e4π ik/3u2/3e2/3

(n − 2)2/3

(
1 − 2

n

)n/3+γ

eβ((n−2)1/3−n1/3)

+
((

1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ3

1 + t2
+ i

dθ0

dt

)
ue

n − 3

(
1 − 3

n

)n/3+γ

eβ((n−3)1/3−n1/3) + · · · = 0.

Noting that(
1 − 3

n

)n/3+γ

= e−1
(
1 − (

3γ + 3
2

)
1
n

+ · · · ) ,

(
1 − 2

n

)n/3+γ

= e−2/3 + · · · ,

eβ((n−3)1/3−n1/3) = 1 − βn−2/3 + · · ·
we find that the O(n0) balance gives

1

3

du

dt
= ie−iθ0 t

cos2 θ0(1 + t2)
= − (1 + it)1/2

t (1 − it)1/2
.

Hence

u = −3
∫ t

i

(1 + it)1/2

t (1 − it)1/2
dt. (120)

We may evaluate the integral to give
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u = 3(i − 1)π

2
+ 3 log

(
1 + (1 + t2)1/2

) − 3 log t − 3i log
(
t + (1 + t2)1/2

)
. (121)

Equating coefficients at O(n−2/3) gives

β

3

du

dt
+ u

dβ

dt
+

(
1 + ie−iθ0 sin θ0

cos3 θ0

)
te4π ik/3u2/3θ2

1 + t2
= 0.

Hence

d

dt
(e2π ik/3u1/3β) = −

(
1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ2

1 + t2
= a(2 − it)

2t (1 − it)3/2(1 + it)1/2
.

Hence

β = e−2π ik/3

u1/3

∫ t

i

a(2 − it) dt

2t (1 − it)3/2(1 + it)1/2
. (122)

Equating coefficients at O(n−1 log n) we find dγ /dt = 0, so that γ is in fact constant. Finally,
equating coefficients at O(n−1) we find

u


k

d
k

dt
+

(
γ + 1

2

)
du

dt
+

((
1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ3

1 + t2
+ i

dθ0

dt

)
u = 0.

Hence


k = e−iθ0

uγ+1/2
exp

(
−

∫ t
(

1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ3

1 + t2
dt

)
= Gk

uγ+1/2
, (123)

say. Now, as t → i,

θ3 ∼ e3iπ/4

21/2(t − i)3/2
,

−
∫ t

(
1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ3

1 + t2
dt ∼ 3

2(t − i)
,

e−iθ0 ∼ e3iπ/4(t − i)1/2

21/2
,

so that


ku
γ+1/2 ∼ const. × (t − i)2.

Since u ∼ 21/2e3iπ/4(t − i)3/2 and θ0 ∼ (i/2) log(t − i) as t → i we therefore have that

3

2

(
γ + 1

2

)
= 2, i.e., γ = 5

6
.

5.2. STOKES-LINE SMOOTHING

As usual we truncate the algebraic series for θ and q optimally

θ =
N−3∑
n=0

εn/3θn + RN, q =
N−3∑
n=0

εn/3qn + SN,
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where RN satisfies

ε
dRN

dt
+ 1

3

du

dt

(
RN − ε

N
3 θN − ε

N−1
3 θN−1 − ε

N−2
3 θN−2

)

− d

dt

(
βe2π ik/3u1/3

) (
ε2/3RN − ε

N+2
3 θN − ε

N+1
3 θN−1

)
+ εf RN = · · ·

where

f =
((

1 + ie−iθ0 sin θ0

cos3 θ0

)
tθ3

1 + t2
+ i

dθ0

dt

)
and the omitted terms are lower order as N → ∞ and ε → 0.

The presence of eβn1/3
in the behaviour of θn moves the optimal truncation point from

N ∼ r/ε to N ∼ r/ε − (r/ε)1/3Re(βe−2iθ/3) where ue2π ik = reiθ . This moves the Stokes
line by a distance ε2/3. However, since the width of the Stokes line is ε1/2, the leading
order Stokes smoothing can be observed without this extra complication. Writing RN =
A(u)e− u

3ε e
e2π ik/3βu1/3

ε1/3 gives

ε
du

dt

dA

du
+ εf A = 1

3

du

dt
e− e2π ik/3βu1/3

ε1/3 e
u
3ε

(
ε

N
3 θN + ε

N−1
3 θN−1 + ε

N−2
3 θN−2

)
+ · · · .

With N = r/ε + α, where α is O(1) as ε → 0, we find

ε
N
3 θN ∼ Gk

r1/2εγ eiθ(γ+1/2)
exp

[( r

3ε
+ α

3

)(
log

(r
ε
+α

) ε

reiθ
−1+3β

ε2/3

r2/3

)
+ reiθ

3ε
−β

r1/3eiθ/3

ε1/3

]

which is exponentially small except near the Stokes line θ = 0. Setting θ = ε1/2θ̄ gives

ε
N
3 θN ∼ Gk

r1/2εγ
e− rθ̄2

6 .

Writing

d

du
= − ie−iθ

r

d

dθ

the local equation in the vicinity of the Stokes line is therefore

dA

dθ̄
= iGk

εγ+1/2
e− rθ̄2

6 ,

so that the jump in A across the Stokes line is given by

[A] =
√

6π iGk

εγ+1/2
. (124)

The relevant Stokes lines are that for k = 0 on which arg(u) = 0, which lies down the
imaginary axis from t = i, and the corresponding Stokes line up the imaginary axis from
t = −i, and shown in Figure 4(c). Stokes lines corresponding to other values of k do not
intersect the real axis. Thus there will be a solution to the boundary value problem only if

0 = 0. To determine 
0 we need to match this outer solution with an inner solution in the
vicinity of t = i.

6. Matching with the inner region

Defining the inner variable z by
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t = i + ε2/3z, (125)

we find

cos θ0 ∼ e−3iπ/4

21/2ε1/3z1/2
, (126)

sin θ0 ∼ − e−iπ/4

21/2ε1/3z1/2
. (127)

log q − iθ ∼ − log 2 − ε2/3

(
a

4
+ iz

2

)
. (128)

θ0 ∼ i

2
log z − i log

(
21/2e−3iπ/4

ε1/3

)
. (129)

We define the inner solution φ by

q = e−3iπ/4

21/2ε1/3z1/2
φ, (130)

giving, to leading order,

−2
√

2 e−3iπ/4 d

dz

(
φ0

z1/2

)
= 1 − 1

φ2
0

− ia

2z
. (131)

The change of variables

ζ = iz

2
, (132)

gives

− d

dζ

(
φ0

ζ 1/2

)
= 1 − 1

φ2
0

+ a

4ζ
. (133)

As before, we are interested in the outer limit of this inner expansion. Expanding as ζ → ∞
we find

φ ∼
∞∑

n=0

An

ζ n/2
=

∞∑
n=0

An

(
2

iz

)n/2

, (134)

where the An satisfy the recurrence relation

1

2

n−3∑
m=0

n−m−3∑
k=0

(k + 1)AkAmAn−m−k−3 =
n∑

m=0

An−mAm + a

4

n∑
m=2

An−mAm−2, n ≥ 3, (135)

with

A0 = 1, A1 = 0, A2 = −a

8
, A3 = 1

4
. (136)

It is easy to check that the large n behaviour of An is
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An ∼ �nn/3+γ e−n/3+β0n
1/3

4n/3
,

where γ = 5/6 and β0 = −3a/25/3. In fact, there are three possible large n behaviours
corresponding to the three roots of 41/3 and n1/3. Since An is real we have

An ∼ �1n
n/3+γ e−n/3+β0n

1/3

4n/3

+�2 e2inπ/3nn/3+γ e−n/3+e2iπ/3β0n
1/3

4n/3
+ �̄2 e−2inπ/3nn/3+γ e−n/3+e−2iπ/3β0n

1/3

4n/3
.

For a < 0, the real root dominates, while for a > 0 the complex conjugate pair dominates.
From the outer expansion we have as t → i,

εn/3qn ∼ εn/3iq0θn ∼ iq0
k,0e−2π ink/3nn/3+γ e−n/3+e−2π ik/3β0n
1/3

22n/3ζ n/2
,

where 
k,0 is the inner limit of 
k. Matching this with the inner solution gives


0,0 = −i�1, 
1,0 = −i�̄2, 
2,0 = −i�2.

Because the real root dominates when a < 0 it is easy to see that 
0,0 	= 0, the Stokes line
down the imaginary axis is active, and there is no solution to the boundary value problem.
However, when a > 0, 
0,0 is buried in the late terms of An and it is hard to tell for what
values of a the condition for a solution 
0,0 = 0 is met. Doing so requires a super-exponential
analysis of the recurrence relation, or a numerical solution of the inner problem (133), both
of which are beyond the scope of the present paper. Fortunately, the key conclusion (namely
that λ = 1/2 is selected by kinetic undercooling in the limit ε → 0) follows from the analysis
above without the need for such refinements.

7. Discussion

The rôle of surface tension in selecting a discrete spectrum of Saffman-Taylor fingers has
been widely analysed. Here, in part as a step towards analysing the effects of more general
regularisations within a unified framework, we have studied the influence of another physi-
cally meaningful one, namely kinetic undercooling. The main conclusion (the selection of the
λ = 1/2 Saffman-Taylor finger when the regularising parameter is small) is the same as for
surface tension and again requires the careful tracking of exponentially small terms; this is
not a coincidence, the case λ = 1/2 being special within the family of Saffman-Taylor fingers
with regard to its complex plane singularities.

The beyond-all-orders problem described in Sections 3–6 is notably subtle. Firstly, the
Stokes lines exhibit rather exotic behaviour at the origin (where the real line passes through
them). We believe that the model problem discussed in Appendix 2 is the simplest way to
elucidate such behaviour but we note that such difficulties can to a large extent be obviated
in the asymptotic calculation by diverting the contour around the origin. The real line in-
terpretation is important, however, in clarifying the role of the analyticity of the interface
in the selection process (cf. Appendix A1.5). In particular we note the possibility of fingers
which are even in y but are non-analytic at their tips, with the non-analyticity arising for small
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kinetic undercooling in a term which is exponentially small. Numerically it would presumably
be extremely difficult to exclude such solutions, and thereby determine the required discrete
spectrum of analytic interfaces; we leave the numerical treatment of this problem as an open
challenge.

Secondly, as indicated in Section 6, it seems that a ‘hyperasymptotic’ calculation is re-
quired if correction terms to λ = 1/2 are to be constructed; to our knowledge, this is the first
such example and it motivates further studies directed at developing the necessary techniques.

We conclude by emphasising the effectiveness of asymptotic techniques in identifying and
describing the relevant solutions for both small and large kinetic undercooling, providing a
rather complete picture of the structure of travelling wave solutions to the Hele-Shaw problem
with kinetic undercooling.

Appendix 1, The Hele-Shaw problem with kinetic undercooling

A1.1. PREAMBLE

This appendix is intended to set the beyond-all-orders analysis above into context by dis-
cussing some of the properties of

∇2φ = 0,

∂φ

∂y
= 0 on y = ±1,

φ ∼ x as x → +∞,

φ = cvn = c
∂φ

∂n
on x = f (y, t),

(A1.1)

where f is the moving boundary (this corresponds to (1)–(3) above with slightly different
scalings; n is in the inward normal direction to the fluid), for O(1) values of the kinetic un-
dercooling parameter c. We largely concentrate, for reasons which will become clear shortly,
on cases where f (y, t) is finite for all |y| ≤ 1, so no condition is required as x → −∞; as in
[11], the problem is not then correctly specified unless the contact angles (tan−1(±1/∂f/∂y)

at y = ±1) are prescribed and less than π/2 or are required to be greater than or equal to π/2;
we shall focus mainly on the latter case.

It is worth noting that the Hele-Shaw problem with kinetic undercooling inherits the in-
variance under arbitrary changes of clock of the unregularised problem; thus, if the condition
in (A1.1) as x → +∞ is generalised to φ ∼ Ṫ (t)x, Ṫ > 0, the change of variables
t̂ = T (t), φ = Ṫ (t)φ̂, vn = Ṫ (t)v̂n enables (A1.1) to be recovered and, in particular, for
travelling waves to be sought (this is not the case with surface tension, for example). The
‘blowing’ case (Ṫ < 0) corresponds to a time-reversal (t̂ = −t, φ = −φ̂, vn = −v̂n) of the
‘sucking’ one (Ṫ > 0), a property which the surface-tension regularisation again lacks.

A1.2. LINEAR STABILITY

Perturbing off the base state φ = x − t + c, f = t by writing

φ ∼ x − t + c + �, f ∼ t + F

yields
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∇2� = 0,

∂�

∂y
= 0 on y = ±1,

� → 0 as x → +∞,

� = −F + c
∂F

∂t
,

∂F

∂t
= ∂�

∂x
on x = t,

which has solutions

� = Ake−k(x−t )e
k

1+kc
t

{
cos ky

sin ky

}
, F = −(1 + kc)Ake

k
1+kc

t

{
cos ky

sin ky

}
(A1.2)

for suitable k, so (unlike the surface-tension regularisation) all wavenumbers are unstable;
nevertheless the kinetic undercooling term provides the required moderation of the growth
rate for large k.

A1.3. TRAVELLING WAVES

Provided f (y, t) is finite for all y, (A1.1) admits the exact travelling-wave solution

φ = x − t + c, f = t + g(y)

(the possibility of such a solution follows from the kinematic condition and it is thus applicable
to most regularisations), where

g + c = c

/ (
1 +

(
dg

dy

)2
) 1

2

.

This has a one-parameter family of solutions

g =
√

c2 − (y − y0)2 − c,

where y0 is an arbitrary constant, and an envelope solution g = 0. Since kinetic undercooling
does not require the interface to be analytic, so that, in particular, it may contain a corner of
angle less than π (see [21]), we may thus construct the following continuum of solutions for
π/2 contact angles:

(a) g =
√

c2 − (1 − |y|)2 − c for c ≥ 1. (A1.3)

(b) g = 0, |y| ≥ y0, g =
√

c2 − (y0 − |y|)2 − c, |y| ≤ y0, 0 < y0 < min(c, 1),

(A1.4)

where we have restricted attention to even solutions. Related solutions corresponding to higher
modes are readily constructed, such as

g =
√

c2 − y2 − c |y| ≤ 1
2 , g =

√
c2 − (1 − |y|)2 − c, |y| ≥ 1

2 for c ≥ 1
2 (A1.5)

Solutions such as (A1.4) in which the interface is partially straight are expected to be unstable
(cf. Section A1.2); this is perhaps most simply clarified by analysing the limit c → ∞ whereby
under the scalings
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t = ct̂, f = ct̂ + f̂ /c, φ ∼ c + z + φ̂0(t̂)
/
c,

where z = x − ct̂ , we obtain

∂f̂0

∂t̂
= 1

2

(
∂f̂0

∂y

)2

+ f̂0 + φ̂0(t̂ ), (A1.6)

in which φ̂0 is determined by conservation of mass and is readily eliminated from (A1.6) by a
suitable translation of f̂0. Thus for c ≥ 1, we expect (A1.3) to give the stable travelling-wave
profile (these being non-planar for all finite c, in keeping with Section A1.2); as c drops below
one we expect a configuration of the type shown in Figure 1 to develop, except that, for the
current thought experiment in which c is progressively decreased, two ‘half-fingers’ of gas
will result adjacent to the walls, with fluid down the middle of the channel; our two scenarios
are mathematically equivalent due to symmetry. In fact, since (as noted above) a contact angle
greater than π/2 cannot be imposed, the family of solutions

g =
√

c2 − (y − y0)2 − c, |y0| < min(c − 1, 1) (A1.7)

is as acceptable as (A1.3), bifurcating to the configuration in Figure 1 as c drops below one.

When y0 = 0, the solution (A1.7) has contact angle φ = π − tan−1
(√

c2 − 1
)

and the

solutions for c ≥ 1 are best characterised by this angle, rather than by λ (since λ ≡ 1 holds).
Solutions for contact angles φ < π/2 are also readily constructed (for brevity we consider

the case where the same angle is enforced at y = ±1); the analog of (A1.3) is

g =
√

c2 − (1 + c cos φ − |y|)2 − c, c ≥ 1/(1 − cos φ)

so the bifurcation at which the gas ceases to occupy the full channel width occurs at increasing
values of c as φ is decreased; this is unsurprising, since the relevant configuration corresponds
closely to π/2 contact angle fingers in progressively wider channels.

A1.4. c → 1−

We now briefly examine the limit λ → 1−. The moving-boundary problem (A1.1) is supple-
mented by

∂φ

∂x
→ 0 as x → −∞, |y| > 1 − λ.

The wavespeed is given by U = 1/λ and we thus write

f = Ut + g(y).

The two relevant small parameters are ε = 1 − c and δ(ε) = 1 − λ; it will turn out that δ � ε

so that U = 1 + O(ε) and, correct at O(ε), we can take as our outer solution (cf. (A1.7))

g ∼
√

(1 − ε)2 − y2 − (1 − ε). (A1.8)

The inner scalings are

x = Ut − (1 − ε) + δ
1
2 Z, y = 1 − δY, φ = δ

1
2 �
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so that (cf. [12])

� ∼ �0(Z) + δ

(
− 1

2

d2�0

dZ2
Y 2 + �1(Z)

)

and, writing the free boundary as Y = h(Z),

�0 = −dh0

dZ
= − d

dZ

(
h0

d�0

dZ

)
.

Hence

dh0

dZ
= (2 (h0 − log h0 − 1))

1
2 ,

from which it follows that

h0 ∼ 1
2Z2 + 2 log Z + 3 − log 2 as Z → +∞. (A1.9)

Since (A1.8) implies that

h ∼ 1
2Z

2 + ε

δ
,

matching with (A1.9) for Z = O(δ− 1
2 ) implies

ε ∼ δ log(1/δ) as δ → 0

i.e.

λ ∼ 1 + (1 − c)

log(1 − c)
as c → 1−,

giving the asymptotic behaviour of λ in the complementary limit to that discussed in the bulk
of the paper.

A1.5. THE TIP OF THE FINGER

As already noted, the interface x = f (y, t) in (A1.1) need not be analytic and this can have
significant implications for the nature of travelling-wave solutions. Here we analyse the local
behaviour at a non-analytic tip at (s(t), 0) by writing x = s(t)+ z and, for brevity treating the
case of solutions symmetric about y = 0,

φ ∼ a(t) + ṡz + b(t)(z2 − y2) + . . . ,

f ∼ s(t) − β(t)y2 + F(y, t),

where F = o(y2); the moving-boundary conditions yield

cṡ = a, cβ̇ + (2cβ − 1)βṡ = b,

with a and b being determined as part of the solution. It follows from φ = cvn that the terms in
F of interest here (namely those which arise from non-analyticities in the initial data f (y, 0)

rather than being driven by the flow φ) satisfy

∂F

∂t
+ 2βṡy

∂F

∂y
= ṡ

c
F ; (A1.10)
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the growth rate in (A1.2) as k → ∞ corresponds to (A1.10) with ṡ = 1 and with the second
term negligible, as is to be expected. Hence if f (y, 0) = F0(y), s(0) = 0, it follows from
(A1.10) that

F = e
s
c F0(y

/
e2

∫ t
0 β(t ′)ṡ(t ′)dt ′), (A1.11)

so that, in particular, non-analyticities of the form

F0(y) = A|y|m, m > 2, (A1.12)

grow for sufficiently small m but decay for large m; if s ∼ Ut, β → β∞ as t → ∞ then

F ∼ Be(1−2mβ∞c)Ut/c|y|m as t → ∞, (A1.13)

so the exponent m for neutral stability, namely

mc = 1/2β∞c, (A1.14)

increases as c decreases (as is to be expected from the regularising role of kinetic undercool-
ing). We conclude from (A1.11)), (A1.13) that families of travelling-wave solutions to (A1.1)
should exist which are non-analytic at the tip (the non-analyticity being related to the local
behaviour (i.e., β∞) via (A1.14)), but that such travelling waves can arise only if the initial
data contain a suitable term of the form (A1.12) with m = mc; in other words, it seems likely
that travelling wave solutions of arbitrary velocity exist for arbitrary λ, but that they have non-
analytic interfaces (this not being permitted in the case of surface tension) and can arise only
from very special initial data (being unstable). The waves we have selected above in the limits
c → 0+ and c → 1− are those with analytic free boundaries and we expect these to arise
generically for large time from wide classes of initial data, with the analysis above making
explicit some of the subtleties of the selection process.

Appendix 2, Behaviour at the origin – linear paradigm

In this appendix, we analyse a simple linear model problem, namely

−εt
dφ

dt
+ φ = 1

t2 + 1
, (A2.1)

to clarify the (remarkably complicated) structure of the Stokes line close to t = 0, a compli-
cation which can be circumvented (as we have done above) by taking a path of integration
which avoids the origin.

We specify φ uniquely by requiring that

φ → 0 as t → −∞
and that φ be real along the real line (the complementary function

φ = At1/ε,

is exponentially small for |t| < 1, and this latter condition relates to the placing of branch
cuts through the origin; both t = 0 and t = ∞ are regular singular points of (A2.1) and other
branch cuts emanate from the logarithmic singularities in φ at t = ±i). The exact solution to
(A2.1) is then
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φ = 1

ε
(−t)

1
ε

∫ t

−∞
1

(−t ′)
1
ε +1(t ′2 + 1)

dt ′,

and repeated integration by parts gives that

φ =
N∑

n=0

(−1)n(−t)2n

1 − 2εn
− (−1)N

ε
(−t)

1
ε

∫ t

−∞
1

(−t ′)
1
ε −2N−1(1 + t ′2)

dt ′, (A2.2)

so choosing N  1 such that

2N < 1/ε < 2N + 2

(for brevity, we avoid discussion of the case in which 1/ε is an even integer) we may deduce
that in |t| < 1 we can write φ as the superposition of

α(ε)(−t)
1
ε , (A2.3)

where

α = −(−1)N

ε

∫ 0

−∞
1

(−t ′)
1
ε
−2N−1(1 + t ′2)

dt ′ = − π

2ε sin(π/2ε)
, (A2.4)

and a convergent Taylor expansion (cf. (A2.2)). We note that the quantity (A2.3) corresponds
very closely to (A1.13) with m = mc (with t and ε here corresponding to y and c, respectively,
there). The small t expansion of φ is thus perfectly innocuous; the small ε expansion, and the
associated Stokes phenomenon, is not, however. Since (A2.1) is invariant under t → −t , we
may deduce that an expression of the form

α
(
(−t)

1
ε − t

1
ε

)
will be present as t → +∞; for this to be real, we must split the first term into two equal parts
and we place the branch cut of one up the positive imaginary axis and that of the other down
the negative one, leaving

α(cos(π/ε) − 1)t
1
ε = π sin(π/2ε)t

1
ε /ε (A2.5)

as the term we expect to be turned on in part via the Stokes phenomenon.
We place all the branch cuts along the imaginary axis. The jump [φ]+− across them (where

+ denotes positive, and − negative, real part of t) satisfies, writing t = iτ ,

−ετ
d

dτ
[φ]+− + [φ]+− = 0

away from τ = ±1. Since

φ ∼ 1

2ε
log(1 − |τ |) as τ → ±1

we have for τ > 1 a contribution

π i

ε

(
t

i

) 1
ε

(A2.6)

to [φ]+− and for τ < −1 a contribution
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−π i

ε

(
t

−i

) 1
ε

. (A2.7)

Similarly, splitting (A2.3) into two equal parts, as outlined above, we have a contribution of

αi sin(π/ε)t
1
ε = −π i cos(π/2ε)t

1
ε /ε

to [φ]+− on the positive imaginary axis and of

−αi sin(π/ε)t
1
ε = π i cos(π/2ε)t

1
ε /ε

on the negative one. Summing the relevant expressions, the branch cut information thus tells
us that

[φ]+− = π sin(π/2ε)t
1
ε /ε for |τ | > 1,

precisely in keeping with (A2.5), and that

[φ]+− = −π i cos(π/2ε)t
1
ε /ε for 0 < τ < 1, (A2.8)

[φ]+− = π i cos(π/2ε)t
1
ε /ε for − 1 < τ < 0, (A2.9)

so (prejudging the Stokes line analysis, the above descriptions of the branch cuts providing
rather complete information for this paradigm) it follows that the Stokes lines 0 < τ < 1 and
−1 < τ < 0 should switch on the quantities (A2.6) and (A2.7) respectively.

Having established these exact properties of (A2.1), we now turn to an analysis of the limit
ε → 0+, in which

φ0 = 1

t2 + 1
is the leading-order outer solution. There are inner regions in the complex plane at t = ±i +
O(ε) which generate Stokes lines running along the imaginary axis to the origin. To perform
the analysis of these Stokes lines it is convenient to transform independent variables, whereby
we write t = e−s to give

ε
dφ

ds
+ φ = 1

2(1 + tanh s)

which is equivalent to a problem analysed for quite different reasons in [22] (though we align
the branch cuts in a different way here). The complex s plane contains multiple copies of the
complex t plane and Figure 6 gives sample integration paths (i)–(iii) in each.

On path (iii), we turn on (A2.5) via the two branch cuts, as described above. On path (ii) we
cross a single branch cut and a single Stokes line; the analysis of [22] shows that this Stokes
line switches on precisely the required quantity (A2.7) via the usual error function smoothing.
The discussion of the path (i), however, is more delicate and brings us to the crux of the
matter. This path apparently crosses no Stokes lines; however, Figure 6(b) is misleading in
the sense that the thickness of the Stokes lines grows as

√
εRe(s), so for Re(s) = O(1/ε)

all the Stokes lines merge (equivalently, given the 2π i periodicity in the s plane, the two with
Im(s) = ±π i/2, corresponding to those in Figure 6(a), merge) and the integration path (i)
runs through this merged array thereby turning on the requisite quantity (A2.7). As shown in
[22], this infinite array of Stokes lines leads to a Stokes switching that is significantly more
complicated than the usual error function. Via this merging of Stokes lines, it is also shown
there that, along the right-ward component of (i), a quantity
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Figure 6. Sample integration paths in (a) the t plane and (b) the s plane. Dark solid lines are Stokes lines, dashed
lines are branch cuts.

−πe−(s−π i)/ε
/

2ε sin(π/2ε)

emerges as Re(s) → +∞, consistent with (A2.3)–(A2.4); moreover, this term forms part
of a convergent series corresponding to (A2.2); in other words, as the various Stokes line in
Figure 6(b) blur the Stokes phenomenon (associated with divergent expansions) dissipates as
the convergent large Re(s) series emerges in a rather delicate way from the small ε asymptotic
expansion. (To clarify this point, we note that the large n ansatz for φn of the factorial over
power type described in [17], for example, is not valid for sufficiently large Re(s) (specifically,
Re(s) = O(n

1
2 ) in the current example); a related point is that the limits ε → 0 and s → ∞

evidently do not commute). Equivalently, in the t plane the Stokes lines disappear in the
neighbouring of origin by passing through a region (corresponding to Re(s) = O(1/ε)) in
which |t| is exponentially small but arg(t) varies over the full range.

In summary, we stress the following points.
(i) The nature of the Stokes switching across the imaginary axis, as described by an ε →

0 asymptotic expansion, is non-trivial for |t| exponentially small, with the convergent
t → 0 series (A2.2) providing a much simpler representation of the solution in this
neighbourhood.

(ii) The Stokes lines emanating from t = ±i each terminate at the origin.
(iii) Taking an integration path in the complex plane which avoids the origin (as above) yields

valid results whilst avoiding many of the difficulties alluded to above.

Appendix 3: Explicit expressions for u and F

The expression (56) may be integrated explicitly to give
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u = 2 tan−1 x − (1 − b2)1/2 (1 + b) tan−1

(
(1 − b)1/2 x

(1 + b)1/2

)

−(1 − b2)1/2 (1 − b) tan−1

(
(1 + b)1/2 x

(1 − b)1/2

)
+ b2 log(1 − x) − b2 log(1 + x)

where

b = √
1 + α, x =

√
b + i t

b − i t
.

The expression (64) for F(t) may be simplified to

F(t) = 2
√

α

π(1 + √
1 + α)

− 2((1 + α)1/2 + it)1/2

π((1 + α)1/2 − it)1/2
+ 4

π
log

(
(1 + α + t2)1/2 + √

1 + α

(−it)(
√

α + √
1 + α)

)

−
√

1 + α(1 + it)

2(1 + √
1 + α)(

√
1 + α − it)

− 2 log(−it) + 5

4
log

(
it + √

1 + α√
1 + α − 1

)

+3

4
log

(
−it + √

1 + α

1 + √
1 + α

)
+

√
1 + α − 1

4(
√

1 + α + 1)
−

√
1 + α + it

4(
√

1 + α − it)

−3

4
log

(
(
√

1 + α + it)(
√

1 + α + 1)

(
√

1 + α − it)(
√

1 + α − 1)

)

− 2

π

∫ (
√

1+α+it)1/2

(
√

1+α−it)1/2

(
√

1+α−1)1/2

(
√

1+α+1)1/2

(3 + τ 2) tan−1 τ

τ
dτ.

(A3.10)

It follows that, as t → i
√

1 + α,

F ∼ 1

2
log(t − i

√
1 + α) + iπ

4
+ 2

√
α

π(1 + √
1 + α)

− 4

π
log

(√
α + √

1 + α
)

+1

2

(
√

1 + α − 1)

(
√

1 + α + 1)
− 1

4
log(1 + α) + 3

2
log 2

−1

2
log(

√
1 + α − 1) − 3

2
log(

√
1 + α + 1)

− 2

π

∫ 0

(
√

1+α−1)1/2

(
√

1+α+1)1/2

(3 + τ 2) tan−1 τ

τ
dτ + · · · .

(A3.11)
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